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A population balance model presented describes simultaneous coagulation and frag- 
mentation during shear-iaduced flocculation. Given sufficient time, a floc-size distribu- 
tion reaches steady state that reflects the balance between coagulation and fragmenta- 
tion. The model agrees with experimental data for the evolution of the average floc size. 
Higher shear shifts the steady-state size distribution to smaller sizes. When the steady-state 
size distributions obtained at various shear rates are scaled with the average floc size, 
however, they collapse onto a single line. This indicates that the steady-state floc-size 
distribution is self-preserving with respect to fluid shear. This distribution is universal for 
the employed coagulation and fragmentation rates provided that less than 5% (by num- 
ber) of the particles remain unflocculated. This result is supported with experimental 
data on shear-induced flocculation of polystyrene particles, although a detailed quanti- 
tative comparison is limited by the irregular structure of the flocs. 

Introduction 
Simultaneous coagulation and fragmentation by fluid shear 

is encountered in processes involving polymerization (Blatz 
and Tobolsky, 1945; Alvarez et al., 19941, liquid-liquid disper- 
sion (Coulaloglou and Tavlarides, 19771, emulsification 
(Danov et al., 1994), and flocculation (Lu and Spielman, 
1985). The removal of fine particles from drinking or waste- 
water (Tambo, 1991) and the recovery of particulate prod- 
ucts/microbial biomass from bioreactors (Shamlou and Tich- 
ener-Hooker, 1993) is often facilitated by enlarging their size 
by flocculation. 

Most flocculators are operated under shear (Parker et al., 
1972) assuring thorough mixing and high collision frequency 
between particles and therefore rapid particle (floc) growth. 
During shear-induced flocculation, a flocculant is added to 
the suspension to destabilize it. Early on, the particles rapidly 
grow by shear-driven coagulation. As the particles become 
larger, however, they become vulnerable to breakage by 
fluid-particle interactions. After some time, a steady state is 
reached between floc growth and breakage as the floc-size 
distribution no longer changes with time (Reich and Vold, 
1959). Liquid-liquid dispersions exhibit similar behavior, as 
an asymptotic droplet-size distribution is attained by the bal- 
ance between droplet coalescence and breakage (De- 
lichatsios and Probstein, 1976). 

Correspondence concerning this article should be addressed to S .  E. Pratsinis 

A common approach to describe the dynamics of this 
process has been to combine the collision frequency for 
shear-induced coagulation (Saffman and Turner, 1956) with 
various descriptions of particle breakage in the framework of 
the population balance equation. This approach has been 
used primarily to describe or fit experimental data (Boadway, 
1978; Grabenbauer and Glatz, 1981; Lu and Spielman, 1985; 
Burban et al., 1989; Peng and Williams, 1994). More detailed 
fluid mechanics-based stochastic models account for the ef- 
fect of fluid shear field variations on flocculation kinetics (Kim 
and Glasgow, 1987). 

Vigil and Ziff (1989) studied numerically the existence of a 
steady-state size distribution for various forms of coagulation 
and fragmentation rates using moment solutions to the popu- 
lation balance equation. A combination of these rates was 
termed stable if a steady-state solution exists. For a particle 
volume-dependent coagulation rate (as in the case of shear 
coagulation) a steady-state size distribution exists for a posi- 
tive power dependence of the breakage rate on particle vol- 
ume. Tambo and Watanabe (1979) used a population balance 
model to describe the steady-state floc size distributions at- 
tained during flocculation and sedimentation of kaolin sus- 
pensions. Their model incorporated a simplified description 
of breakage and predicted a steady-state floc-size distribution 
that was self-preserving with respect to maximum floc size 
when scaled by an arbitrary factor. When the steady-state size 
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distributions (scaled by the average particle volume) collapse 
onto a single-size distribution, this distribution is termed 
self-preserving (Friedlander and Wang, 1966). Family et al. 
(1986) found good agreement between the descriptions of a 
coagulation-fragmentation process given by a population bal- 
ance model and by one-, two-, and three-dimensional Monte 
Carlo simulations. They also observed that the steady-state 
cluster size distribution was self-preserving when scaled by 
the fragmentation rate constant. Cohen (1990) developed a 
combinatoric model of the steady-state floc-size distribution 
assuming growth and breakage. This model predicted a 
steady-state floc-size distribution that was self-preserving with 
respect to initial number concentration (Cohen, 1992). Com- 
parisons with experimental results indicated that the model 
was better suited to describe coalescence and breakage in a 
liquid-liquid dispersion. 

The main objective of this work is to examine the self-simi- 
larity of the steady-state floc size distribution (SSFSD) and to 
study the effect of shear rate and the fragment-size distribu- 
tion on the shape of the SSFSD. Previous work has shown 
theoretically the existence of the self-preserving distribution, 
but only for simplified models: Tambo and Watanabe (1979) 
assumed that flocs broke reversibly (which is a very special 
case), the model of Family et al. (1986) used generalized de- 
scriptions of coagulation and fragmentation, and Cohen 
(1992) considered only the most probable collisions in his 
model. In addition, these studies did not provide experimen- 
tal support of the theoretical results. Tambo and Watanabe 
(1979) showed a settling time distribution that was self-pre- 
serving only when normalized twice by arbitrary parameters. 
The model used in this work accounts for all possible colli- 
sions and has been used previously to describe realistic sys- 
tems (Lu and Spielman, 1985). Furthermore, the model is ca- 
pable of describing the experimental evolution of the average 
floc size and the floc-size distribution to steady state. 

The objective of this article is to present a model that de- 
scribes particle coagulation and fragmentation concisely and 
describes the attainment of the steady-state floc-size distribu- 
tion during shear-induced flocculation. The effect of process 
variables on this distribution is investigated. For a fixed colli- 
sion frequency and fragmentation mode, steady-state size dis- 
tributions obtained at various shear rates collapse onto a sin- 
gle-size distribution when normalized with the average floc 
size. This type of asymptotic behavior may be used to infer 
theoretical descriptions of floc growth and breakage kinetics 
(Wright and Ramkrishna, 1994). The predictions of the model 
are compared with experimental data for the flocculation of 
polystyrene with alum and NaC1. 

Theory 
During the initial stages of shear-induced flocculation, par- 

ticle growth is dominant and the average particle (floc) size 
increases rapidly by shear-induced coagulation. As the flocs 
grow and become comparable to the sue of fluid eddies, the 
significance of fragmentation (breakage) increases. Thus, the 
rate of change of the particle (floc) concentration by coagula- 
tion and fragmentation is given by (Austin, 1971; Friedlan- 
der, 1977) 

max 

j = i  
- s i n i +  c yi,jSjnj (1) 

where n, is the number concentration of flocs of size i 
(meaning that a single floc contains i primary particles), a is 
the collision efficiency or the fraction of collisions that result 
in coagulation, and p(u,, u,) is the collision frequency for 
particles of volume ui and uk.  Si is the fragmentation rate of 
flocs of size i, and yi,j is the breakage distribution function 
defining the volume fraction of the fragments of size i com- 
ing from j-sized particles. Here, the index m a  represents the 
largest particle size that will form fragments of size i upon 
breakage. The first term on the righthand side of Eq. 1 repre- 
sents the formation of particles comprised of i primary parti- 
cles by collisions of smaller J- and k-sized particles. The sec- 
ond righthand-side term denotes the loss of particles of size i 
by collision with particles of any other size. The third right- 
hand side term describes the loss of particles of size i by 
fragmentation and the fourth righthand side term describes 
the formation of particles of size i by the fragmentation of 
larger particles. 

The coagulation-fragmentation process occurs over ii wide 
size range so a discrete model of flocculation may require 
excessive computation time (Landgrebe and Pratsinis, 1990). 
The employed size domain is divided into ranges or sections 
to ease computation. Equations describing the particle num- 
ber concentration within each section are used. Each section 
is represented by a characteristic volume that is the aver- 
age volume of the sizes contained in the section 

b i - l  + bi v. = - 
2 (2) 

where bi is the upper boundary volume of section i (e.g., 
bi = ui). is also a function, (sectional spacing) f ,  of the 
previous section 6- 

(3) 

In this study, a numerical technique is used to simulate the 
evolution of the particle-size distribution with f = 2 (Houns- 
low et al., 1988; Kusters et al., 1993) 

where ri,j is the breakage distribution function from Eq. 1 
modified to conserve volume within the framework of the 
sectional model, and Ni is the number concentration of flocs 
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with volume V,. Thus, the number of equations that needs to 
be solved is the same as the number of sections. Calculations 
were carried out using 30 sections, from i = 1 to i max 

where u1 is the primary particle volume; the model spans a 
size range of flocs composed of one to 229 primary particles. 
The minimum size corresponds to the smallest particle size 
used in experiments (Oles, 1992; Spicer, 1995). 

The collision frequency for turbulent shear-induced coagu- 
lation in the absence of viscous retardation and floc struc- 
tural effects is (Saffman and Turner, 1956) 

where G is the spatially averaged velocity gradient (Camp 
and Stein, 1943). 

The fragmentation rate is given as a function of particle 
volume by (Kapur, 1972) 

si = AV;n (7) 

where a = 1/3. This is consistent with the theoretical expec- 
tation that breakage rate is proportional to the floc diameter 
(Boadway, 1978; Peng and Williams, 1994) and A is the 
breakage rate coefficient for shear-induced fragmentation 
(Pandya and Spielman, 1982) 

A=A’GY (8) 

where y is a constant inversely proportional to the floc 
strength and A’ is a proportionality constant that is deter- 
mined experimentally. 

The most common breakage mechanisms are: (a) erosion 
of primary particles or small fragments from the floc surface; 

Binary breakage: Two fragments of equal volume are produced 

n n-I 
Ternary breakage: Three fragments are produced, split between two lower sections to 
conserve volume 

4ormal breakage: Two fragments produced, sizes distributed normally among 
ower sections 

Figure 1. Three types of fragment-size distributions 
during shear-induced flocculation. 

and (b) “bulgy deformation” rupture or splitting of the floc 
(Parker et al., 1972; Pandya and Spielman, 1982; Akers et al., 
1987). Erosion results from fluid eddies comparable to the 
floc size. The splitting mechanism arises from pressure differ- 
ences on the opposite sides of the floc that induce a shearing 
type of fragmentation (Parker et al., 1972). 

Here, three distinct breakage distribution functions ( ri,j) 
were investigated (Figure 1) for the sectional description of 
coagulation and fragmentation: 

5 
v, a. ri,j = - ; binary breakage, so max = i + 1 (Chen et al., 

1990) 

v, 
2y b. I‘j,j = -; ternary breakage, so max = i + 2  

normally distributed fragments, so max = maximum i 
(Coulaloglou and Tavlarides, 1977) (9) 

where I$ is the mean volume of the fragment-size distribu- 
tion (which is half the volume of the fragmenting floc), and 
uf is the standard deviation of the fragment-size distribution 
(Coulaloglou and Tavlarides, 1977) 

v, u- = - 
A 

(10) 

where y is the parent floc undergoing fragmentation and A 
is a variable. The larger the value of A, the narrower is the 
fragment-size distribution. Pandya and Spielman (1982) found 
that floc splitting produced 2-3 daughter fragments that were 
similar in size. They modeled floc splitting by assuming the 
floc fragments were distributed normally in size. The lower 
summation limit of j = i in Eq. 4 accounts for any fragments 
that remain in the section after breakage of an i-sized parti- 
cle. However, in the implementation of the binary and ternary 
fragment-size distributions the summation is carried out from 
a lower limit of j = i + 1. For the case of the normal fragment 
size distribution, the summation is carried out from a lower 
limit of j = i. 

In order to conserve volume for the case of the normal 
fragment-size distribution, the volume fraction of particles in 
section i formed by fragmentation of a particle in section j is 
found by integrating rj,j (Eq. 9c) across sections 1 to j ,  sum- 
ming these volume frattions, and then normalizing each rj,j 
value with this sum to ensure that it sums to one. The frag- 
ment size distribution expressions in Eq. 9 are only valid for 
the f = 2 discretization. The formulation in Eqs. 7-9 best de- 
scribes fragmentation by splitting, assuming that the splitting 
mode of breakage is more significant than erosion. This as- 
sumption is justified later on. Equations 6-10 were substi- 
tuted into Eq. 4 and the sectional model was solved numeri- 
cally using DGEAR, an ordinary differential equation solver 
(IMSL, 1989). 
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Experimental Studies 
Flocculation of monodisperse polystyrene particles 

(primary particle size, d ,  = 0.87 p m  by TEM) was investi- 
gated in a 2.8 L, baffled, stirred tank using a six bladed, disk 
mounted Rushton impeller. The impeller rotational velocity 
was measured with an Ono Sokki HT-4100 optical tachome- 
ter. The turbulent shear rate within the stirred tank was 
characterized using the spatially averaged velocity gradient G 
(Camp and Stein, 1943) 

.=($)I” (11) 

where u is the kinematic viscosity of the suspending fluid 
(here, water) and E is the average turbulent energy dissipa- 
tion rate (Godfrey et al., 1989) 

(12) 

where Po is the impeller power number, N is the impeller 
speed, V is the stirred tank volume, and D is the impeller 
diameter. The Po is obtained from the standard power curve 
for the employed six-blade impeller (Holland and Chapman, 
1966). Although the flow conditions within a stirred tank are 
nonhomogeneous (Cutter, 1966; Sprow, 1967; Konno et al., 
1983), Eqs. 11 and 12 are used to provide a basis for compari- 
son with previous work. 

The polystyrene particles were flocculated in distilled wa- 
ter at a solids volume fraction of C#J = 8.3 x correspond- 
ing to an initial number concentration of No = 2.4 X lo8 ~ m - ~ .  
An acidic solution of aluminum sulfate hydrate or alum 
(Al,(SO,), 16H,O) (Aldrich, 98%) was added to promote 
flocculation. The suspension was buffered with sodium hy- 
drogen carbonate (NaHCO,) (Aldrich, 99%) at a concentra- 
tion of 1 mM. The pH was kept neutral (750.1) during all 
experiments. The polystyrene particles were suspended and 
then stirred at G=540  s - l  for 5 min to break up any ag- 
glomerates. A measured amount of flocculant was then added 
and mixed with the suspension for 1 min at G = 540 s-’. Fol- 
lowing this rapid mixing, flocculation was carried out at a 
constant G ranging from 63-129 s-l and alum concentra- 
tion, c =32  mg/L. Samples were withdrawn for floc-size 
analysis using a Nikon Labophot microscope (40X, lOOX, 
400X) connected to a Hitachi-Denshi CCTTV camera. Image 
analysis was performed using Global Lab Image v. 2.0 soft- 
ware, and detailed floc-size distributions were counted by 
measuring the maximum length L of the individual flocs 
(Spicer and Pratsinis, 1996). 

Results and Discussion 
Dynamics of shear-induced flocculation 

The sectional model was validated for pure coagulation of 
an initially exponential size distribution of particles with a 
size-dependent collision frequency that closely resembles the 
shear-induced collision frequency in Eq. 6. The predictions 
of the model were in excellent agreement with analytical so- 
lutions (Golovin, 1963; Hounslow et al., 1988). The model 

predictions for pure fragmentation of an initially monodis- 
perse suspension of spherical particles were also in excellent 
agreement with analytical solutions (Williams, 1990; Kusters 
et al., 1993). The predictions of the model for simultaneous 
coagulation and fragmentation also agreed well with the ana- 
lytical solution for this case (Blatz and Tobolsky, 1945). Dur- 
ing all calculations the loss of total volume (ZN, V,)  was mon- 
itored and found to be less than 1% indicating the robustness 
of this model to domain error. 

Figure 2 shows an example calculation of the evolution of 
the floc number distribution for an initially monodisperse 
suspension undergoing shear-induced flocculation, assuming 
binary breakage of flocs for a = 1, G = 100 s-l ,  A = 1, Nl := 
9.3X lo6 ~ m - ~ ,  and d ,  = 2.17 p m  (Oles, 1992). The distribu- 
tion quickly grows into larger sizes and 25% of the initial 
particles have been flocculated ( N,/Nt,,, = 0.75) after only one 
min. After 75 min, the primary particles are depleted further 
by coagulation while the larger ones begin to form a bell- 
shaped size distribution. Later on at 100 min, the distribution 
shifts to slightly larger sizes, and at 140 min it forms a bell- 
shaped curve that does not grow any larger. Fragmentation 
prevents further growth so the distribution changes very little 
with time and can be considered to be at steady state. For 
example, at 180 min the distribution is indistinguishable from 
that attained at 140 min. The above picture is typical of this 
process and has been well documented experimentally 
(Tambo and Watanabe, 1979; Kusters, 1991; Oles, 1992). This 
is also in agreement with the results of Vigil and Ziff (1989) 
predicting the attainment of steady state for the employed 
coagulation and fragmentation kernels. 

Determination of model parameters 
To compare the model predictions with experimental data, 

1 
Time (minutes) 

1 - 

i I 0  1 0 

Dimensionless Floc Diameter (di / d,)  

Figure 2. Evolution of the floc-size distribution. 
After 140 min, the size distribution has reached steady state. 
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Data of O l e ,  1992 
Population balance 
model 
a =  1 
y =  1.6*0.18 
A' = 0.0047 f 0.0002 

G=25 s-' 

75 ,-I 

125 s-' 

150 s- 

20 40 I 

Dimensionless Time, G# 

Figure 3. Model predictions vs. experimental data of 
Oles (1992) for the evolution of the dimen- 
sionless mass mean floc diameter. 

one needs to consider that model parameters can be ob- 
tained from the experimental conditions with the exception 
of the accommodation coefficient for coagulation a and the 
fragmentation rate coefficient A(A', y). Values of A and a 
were determined by matching the evolution of the predicted 
dimensionless mass mean floc diameter with the experimen- 
tal data of Oles (1992) for the flocculation of 2.17 p m  
polystyrene particles with 1 M NaCl at various shear rates, 
G = 25-150 s-' (Figure 3). The parameters A' and y were 
determined by regression analysis of A as a function of G 
(Lu and Spielman, 1985). 

The model nicely reproduces Oles' data with a = 1, A' = 
0.0047+0.0002, and y = 1.6k0.18 over the whole G range, 
especially the asymptotic values of the particle diameter (Fig- 
ure 3). The first-order behavior exhibited by the model re- 
sults is also in excellent agreement with the moment analysis 
of Vigil and Ziff (1989). There is, however, a systematic devi- 
ation of the model results from the experimental data with 
respect to the particle growth rate. At low shear rates (25 
s-'), the flocs are more irregular (Thomas, 1964) and may 
coagulate more rapidly than their spherical mass equivalent 
counterparts (Wiesner, 1992). The resulting floc growth rates 
wilI therefore exceed the theoretical predictions. At higher 
shear rates (100-150 s-'), the model overpredicts the floc 
growth rate because viscous retardation may slow the coagu- 
lation rate (Spielman, 1970; Higashitani et al., 1982, 1983; 
Han and Lawler, 1992). At average shear rates (50-75 s-l), 
the enhanced coagulation of the irregular flocs may be com- 
pensated for by the viscous effects. Neither of these effects 
are accounted for by the present model. 

The collision efficiency a! is related to the degree of elec- 
trostatic destabilization of the particles and the hydrody- 
namic effects they encounter. Various expressions exist relat- 
ing this parameter to system variables such as ionic strength 
and viscous retardation of collisions (Saffman and Turner, 

1956; Spielman, 1970; Higashitani et al., 1982 and 1983; Han 
and Lawler, 1992). The a = 1 indicates that the suspension 
was completely destabilized and that all collisions were suc- 
cessful. The complete success of all collisions is unlikely, but 
the enhanced coagulation induced by the irregularity of the 
actual flocs may compensate for the reduction of the collision 
efficiency by viscous effects and increase the observed a. 

It is worth noting that Lu and Spielman (1985) also found 
y = 1.6 for flocculation of kaolin with a polymer flocculant at 
G=50-200 s - I .  The two parameters y and A' can be re- 
lated to the strength of the floc, which depends on flocculant 
type and concentration, surface properties of the primary 
particles, floc structure, and suspension medium. All of these 
factors need to be related to the values of y and A' in order 
to provide an accurate description of the floc breakage kinet- 
ics. This work indicates that the simple power law description 
(Eq. 8) is a useful kinetic model of floc breakage. The agree- 
ment between our results and those of Lu and Spielman 
(1985) for the value of the exponent y offers further reassur- 
ance that this type of model is useful in modeling floccula- 
tion, considering especially that two completely different par- 
ticle-flocculant systems were used in the two studies. 

Eflect of shear on the steady-state jloc-size distribution 
The steady-state floc-size distribution (Figure 2, t = 140 or 

180 min) represents the dynamic balance between coagula- 
tion and fragmentation. Figure 4a shows the effect of the 
shear rate G on the steady-state floc-size distribution using 
the obtained A' and y values from Figure 3. The distribu- 
tions were considered to be at steady state once their geo- 
metric standard deviation u- did not change more than 1% 
(Vemury et al., 1994). For these conditions, increasing G in- 
creases the coagulation rate but represents a more pro- 
nounced increase in the fragmentation rate, thus shifting the 
steady-state floc-size distribution into smaller floc sizes (Fig- 
ure 4a). 

When, however, these steady-state floc-size distributions 
are normalized (scaled) with respect to their arithmetic 
(number) average floc size d ,  and replotted (Swift and Fried- 
lander, 1964; Friedlander and Wang, 19661, they collapse onto 
a single line, especially the large tail of the distribution (Fig- 
ure 4b). Hence, the distributions are self-preserving with re- 
spect to shear rate. The shape of the steady-state floc-size 
distribution is not affected by the shear rate once most of the 
distribution grows well above the primary particle size such 
as the concentrations of the primary particle size N , ,  which is 
less than 5% at steady state; N,,,,",, < 0.05; (G = 10 or 25 
s-l). At higher shear rates (G = 50 or 100 s-l), however, 
when the primary particles constitute a significant fraction of 
the distribution, though the large tail of the distribution nicely 
follows the asymptotic one, the small tail does not. Clearly, 
high shear rates prevent the growth of the size distribution to 
large enough sizes to exhibit the full self-preserving distribu- 
tion at steady state. The extent of self-similarity may indicate 
the stage of development of the steady-state floc-size distri- 
bution at a given shear rate. 

Polystyrene floc-size distributions at steady state were de- 
termined by image analysis (using maximum floc length as 
floc size) for G = 63, 95, and 129 s-'  at an alum concentra- 
tion of 32 mg/L and No = 2.5 X lo8 cm-3 (Spicer, 1995). 
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Figure 4. Steady-state floc-size distributions in (a) dimensionless floc-size coordinates (scaled by the diameter of 
the primary particle size, d,), (b) normalized for N, = 9.3~ lo6 ~ m - ~ ,  d, = 2.17 pm, (Y = 1,  A' = 0.0047, 
y = 1.6, and various shear rates G. 
Increased G results in an increased fragmentation rate and a shift of the floc-size distribution into smaller sizes. Higher G values (G > 50 
s -') prevent the size distribution from significantly developing beyond the primary particle size. Upon normalization, the distributions 
collapse onto a single line, especially their large tail. 

These distributions are plotted in normalized form in Figure 
5 (L63 = 84 pm, L,, = 67 pm, LI2,  = 42 pm). It is seen that 
the large tails of these distributions nicely collapse onto each 
other. The experimental floc-size distributions are completely 
self-similar, independent of the applied shear rates. This is in 
agreement with theory, as microscopic experimental observa- 
tions indicated that no primary particles remained in suspen- 
sion at steady state. There is some scatter at the lower sizes 
that is reminiscent of the fragment peaks in Figure 4a, but 
most likely results from the image analyzer's lower detection 
threshold. The lower detection threshold of the image analy- 
sis software is 5 pm, on the order of the size of the smallest 
flocs in the size distribution. As a result, there is a larger 
degree of scatter in the measurements in this size range. 

The shape of the theoretical steady-state self-preserving 
floc-size distribution (Figure 4b) is similar to the experimen- 
tal one but broader (theoretical ggn = 2.23 vs. experimental 
ug,, = 1.7). A direct comparison between the two distributions 
is not possible. The model is based on the equivalent volume 
of primary particles contained in a floc ui while the image 
analysis results are based on the maximum floc length L.  
These two different sizes do not provide a consistent basis 
for comparison between the model and data. Furthermore, 
the model does not account for the irregular floc structure, 
viscous retardation of collisions, and flow field heterogeneity 
that may very well affect the detailed shape of the self-pre- 
serving size distribution with respect to shear. Nevertheless, 
theory and data clearly show the existence of such a distribu- 
tion. This distribution is invariant with shear provided that 

the operative coagulation and fragmentation rates do not vary 
over the employed shear range (Spicer and Pratsinis, 1996). 

Fragment size distribution and the self-preserving steady- 
state Jloc-size distribution 

The effect of various types of fragment-size distributions 
on the self-preserving steady-state size distribution is investi- 
gated in Figure 6 for the conditions in Figure 2. A binary 
fragment size distribution results in the self-preserving size 
distribution of Figure 4b. The volume- and number-based ge- 
ometric standard deviations (ogu and vgn) of the four distri- 
butions in Figure 6 are given in Table 1. The self-preserving 
steady-state distributions resulting from binary or ternary 
fragmentation-size distributions are similar though the latter 
is slightly broader than the former. The increased degree of 
floc breakage by ternary fragmentation affects the shape of 
the steady-state floc-size distribution but does not alter its 
asymptotic behavior. A broad normal ( A  = 6) distribution of 
fragments makes the self-preserving steady-state distribution 
even broader. The shapes of the self-preserving size distribu- 
tion resulting from binary and narrow normal ( A  = 10) distri- 
butions are almost identical as a result of the relative breadth 
of the upper size classes compared to that of the fragment-size 
distribution. However, when A = 6, the steady-state floc-size 
distribution is broader than at A =  10 as a result of the for- 
mation of finer particles upon fragmentation (Coulaloglou 
and Tavlarides, 1977; Alvarez et al., 1994). A broader frag- 
ment-size distribution therefore broadens the steady-state 
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Figure 5. Normalized steady-state floc-size distribu- 
tions obtained by image analysis of flocs pro- 
duced at No = 2.5 x 10' ~ m - ~  as a function of 
shear rate (63, 95 and 129 s-') at an alum 
concentration of 32 mg/L (L,,=84 pm; Lg5= 
67 pm; L,,, = 42 pm). 
The distributions collapse onto each other, indicating that 
they are self-preserving with respect to shear. 

floc-size distribution by increasing the influence of fragmen- 
tation on the attainment of steady state. 

Conclusions 
A model has been presented describing the attainment of a 

steady-state particle-size distribution by simultaneous coagu- 
lation and fragmentation. The model predictions are in quali- 
tative agreement with experimental data of polystyrene-NaC1 
flocculation in the literature. It is shown that the steady-state 
floc-size distribution is independent of shear rate when nor- 
malized by the average floc size. It is thus self-preserving with 
respect to shear provided that the coagulation and fragmen- 
tation mechanisms do not change in the employed shear range 
and that no more than 5% (by number) of the initial particles 
remain unflocculated. The existence of this self-preserving 
size distribution is supported by our data on alum-poly- 
styrene flocculation. The fragment-size distribution affects the 
shape of the self-preserving steady-state size distribution. As 
the fragment-size distribution broadens, so does the self-pre- 
serving one. 
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Figure 6. Self-preserving floc-size distributions for si- 
multaneous coagulation and fragmentation of 
polystyrene particles (base case) resulting 
from various fragment-size distributions. 
A ternary breakage mechanism results in a broader distribu- 
tion than a binary one as a result of the larger number of 
fragments produced during a breakage event. A narrow nor- 
mally distributed fragment size distribution ( A  = 10) gives a 
self-preserving distribution similar to that of the binary frag- 
ment size distribution while a broad ( A  = 6 )  fragment-size 
distribution results in a broader self-preserving one. 

Notation 
a =power law constant 

A =breakage rate coefficient, cm-3n-s-1 
A' =breakage rate coefficient determining functional depend- 

ence of the breakage rate on shear rate, ~ m - ~ ~ ~  
b, =upper boundary volume of section i (sectional), cm3 
d =mass equivalent floc diameter (model results and light- 

scattering data of Oles (19921, cm 
d ,  =mass mean mass equivalent floc diameter (model results 

and light-scattering data of Oles (1992)), cm 
d, =arithmetic (number) mean mass equivalent floc diameter 

(model results), cm 
d, = mass-equivalent diameter of primary particle, cm 
f = sectional spacing factor 

i max =index of the largest section 
L ,  =arithmetic (number) average maximum floc length at steady 

state at shear rate G ,  cm 

Table 1. Geometric Standard Deviation of the Steady-State 
Volume and Number Size Distribution Arising from 

Simultaneous Coagulation and Fragmentation during 
Shear-Induced Flocculation 

'Tg u % n 
Fragment-Size Distribution 

Binary 1.793 2.232 
Ternary 1.948 2.386 
Broad Normal Distribution ( A  = 6) 1.906 2.933 
Narrow Normal Distribution ( A  = 10) 1.815 2.259 

1618 June 1996 Vol. 42, No. 6 AIChE Journal 



L ,  =arithmetic (number) average maximum floc length, cm 
n, =number concentration of particles of size i (discrete), 

No =initial number concentration of primary particles during 

N, =number concentration of particles in section i (sectional), 

N,, = steady-state number concentration of particles in section i 

N,,, = total number concentration of particles (sectional), 

no./cm3 

experiment, no./cm3 

no./cm3 

(sectional), no./cm3 

no./cm3 
S, =breakage rate, s - l  

u ,  =volume of floc of size i ,  containing i primary particles (dis- 

6 =volume of characteristic floc of section i, composed of 2I-l 

t =time, s 

crete), cm3 
V -mean of the fragment size distribution (sectional), cm3 

primary particles (sectional), cm3 

Greek letters 
p(~,<)=collision frequency of particles with volume V,  and 7, 

cm3/s 
r,,, =breakage distribution function, volume fraction of i-sized 

particles produced by breakage of j-sized flocs (sectional) 
e =average turbulent energy dissipation rate, cm3/s2 
A =factor relating standard deviation of fragment-size distri- 

v =kinematic viscosity, cm2/s 
uf =standard deviation of the fragment-size distribution, cm3 

C$ =solids volume fraction of suspended particles, cm3/cm3 

bution to the mean of the distribution 

ug,, = number-based geometric standard deviation 
ugo =volume-based geometric standard deviation 
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